首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   23篇
  2023年   2篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   2篇
  2016年   16篇
  2015年   16篇
  2014年   14篇
  2013年   15篇
  2012年   19篇
  2011年   18篇
  2010年   9篇
  2009年   6篇
  2008年   13篇
  2007年   23篇
  2006年   14篇
  2005年   11篇
  2004年   3篇
  2003年   15篇
  2002年   9篇
  2001年   5篇
  2000年   5篇
  1999年   3篇
  1998年   8篇
  1997年   5篇
  1996年   4篇
  1995年   6篇
  1994年   8篇
  1993年   8篇
  1992年   8篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   9篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1971年   2篇
  1968年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
101.
It has been suggested that the developing brain is less vulnerable to the adverse effects of hypoglycemia than the mature brain; however, this issue remains controversial. We also do not know the magnitude or duration of hypoglycemia needed to trigger hypoglycemic brain injury during development. To address this issue a series of in vivo and in vitro studies were performed. First, we established an acute model of insulin-induced hypoglycemia in mice by administering 3 U/kg of neutral-protamine Hagadorn insulin subcutaneously. When we examined degenerating neurons in hippocampus and striatum by TUNEL labeling, injury was observed after 4 h of hypoglycemia in postnatal day (P)7 mice, and we observed more cell injury in animals rendered hypoglycemic at P7 than at P21. Studies of hippocampal slice cultures revealed that reduction in glucose concentration induced more neuronal injury in slices prepared from P3 and P7 than from P14 and P21 mice. Treatment of slices with an adenosine A(1) receptor (A(1)AR) antagonist reduced the hypoglycemic damage, whereas agonists increased damage, particularly in slices prepared from very young pups. This suggests a critically important role for A(1)ARs, which was further demonstrated by the reduction of hypoglycemic damage in hippocampal slices prepared from A(1)AR(-/-) mice. Furthermore, insulin-induced hypoglycemia in P7 A(1)AR(-/-) mice did not increase TUNEL-positive cells, but a major increase was seen in A(1)AR(+/-) mice. These observations show that the developing nervous system is indeed sensitive to acute hypoglycemic injury and that A(1)AR activation contributes to damage induced by hypoglycemia, particularly in immature mouse brain.  相似文献   
102.
We report on the construction of a high-resolution comparative map of porcine chromosome 17 (SSC17) focusing on evolutionary breakpoints with human chromosomes. The comparative map shows high homology with human chromosome 20 but suggests more limited homologies with other human chromosomes. SSC17 is of particular interest in studies of chromosomal organization due to the presence of QTLs that affect meat quality and carcass composition. A total of 158 pig ESTs available in databases or developed by the Sino-Danish Pig Genome Sequencing Consortium were mapped using the INRA-University of Minnesota porcine radiation hybrid panel. The high-resolution map was further anchored by fluorescence in situ hybridization. This study confirmed the extensive conservation between SSC17 and HSA20 and enabled the gene order to be determined. The homology of the SSC17 pericentromeric region was extended to other human chromosomes (HSA4, HSA8) and the chromosomal breakpoint boundaries were accurately defined. In total 15 breakpoints were identified.  相似文献   
103.
104.

Adenosine is a candidate sleep substance. It can be both a distress signal of importance in pathology and a physiological regulator. Key factors in determining which of these possibilities pertain are: (i) the number of receptors expressed, and (ii) the mechanisms that establish extracellular adenosine levels. The roles of adenosine are studied by means of antagonists and/or animals (mostly mice) with targeted deletions of receptors or enzymes involved in adenosine metabolism. Whereas adaptive changes in the genetically modified mice can occur for the physiologically important effects, such adaptive changes are less likely to occur in situations where adenosine acts as a distress signal. The relevance to sleep will be covered only in general terms in this review and will be covered in other contributions to this volume.

  相似文献   
105.
Abstract

Propentofylline is a novel xanthine that has been shown to limit the extent neuronal damage induced by cerebral ischemia in gerbils (DeLeo et al., 1987). This is in contrast to other xanthines, including, caffeine and theophylline, that increase the extent of damage (Rudolphi et al., 1987; Dux et al., 1987). Propentofylline has been demonstrated to decrease adenosine uptake into human erythrocytes (Fredholm and Lindström, 1986), and to increase extracellular concentration of adenosine in ischemic barain (Andine et al., 1990). Therefore, it was proposed that this compound provides protection in cerebral ischemia, in part, by adenosine receptor stimulation due to increased endogenous adenosine levels.  相似文献   
106.
The pig is a well-known animal model used to investigate genetic and mechanistic aspects of human disease biology. They are particularly useful in the context of obesity and metabolic diseases because other widely used models (e.g. mice) do not completely recapitulate key pathophysiological features associated with these diseases in humans. Therefore, we established a F2 pig resource population (n = 564) designed to elucidate the genetics underlying obesity and metabolic phenotypes. Segregation of obesity traits was ensured by using breeds highly divergent with respect to obesity traits in the parental generation. Several obesity and metabolic phenotypes were recorded (n = 35) from birth to slaughter (242 ± 48 days), including body composition determined at about two months of age (63 ± 10 days) via dual-energy x-ray absorptiometry (DXA) scanning. All pigs were genotyped using Illumina Porcine 60k SNP Beadchip and a combined linkage disequilibrium-linkage analysis was used to identify genome-wide significant associations for collected phenotypes. We identified 229 QTLs which associated with adiposity- and metabolic phenotypes at genome-wide significant levels. Subsequently comparative analyses were performed to identify the extent of overlap between previously identified QTLs in both humans and pigs. The combined analysis of a large number of obesity phenotypes has provided insight in the genetic architecture of the molecular mechanisms underlying these traits indicating that QTLs underlying similar phenotypes are clustered in the genome. Our analyses have further confirmed that genetic heterogeneity is an inherent characteristic of obesity traits most likely caused by segregation or fixation of different variants of the individual components belonging to cellular pathways in different populations. Several important genes previously associated to obesity in human studies, along with novel genes were identified. Altogether, this study provides novel insight that may further the current understanding of the molecular mechanisms underlying human obesity.  相似文献   
107.
It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C) dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g−1 soil) of 13C-labeled glycine (13C2, 99 atom %) to soils in situ. Plots were treated with elevated temperature (+1°C, T), summer drought (D) and elevated atmospheric carbon dioxide (510 ppm [CO2]), as well as combined treatments (TD, TCO2, DCO2 and TDCO2). The 13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs) was determined after 24 h. 13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi) was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS).Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated 13C in all treatments, whereas fungi had minor or no glycine derived 13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was 13C-depleted (δ13C = 12.2‰) compared to ambient (δ13C = ∼−8‰), and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal) utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to future changes in substrate availability and climatic factors.  相似文献   
108.

Introduction  

The present study investigates the association between single nucleotide polymorphisms (SNPs) in the chitinase 3-like 1 (CHI3L1) gene and serum concentrations of YKL-40 in Danish patients with rheumatoid arthritis (RA) and healthy controls as well as the association with RA in the Danish population. The CHI3L1 gene is located on chromosome 1q32.1 and encodes the YKL-40 glycoprotein. YKL-40 concentrations are elevated in the serum of patients with RA compared to healthy subjects, and YKL-40 has been suggested to be an auto-antigen and may play a role in development of RA and in inflammation.  相似文献   
109.
The extraordinary phenotypic diversity of dog breeds has been sculpted by a unique population history accompanied by selection for novel and desirable traits. Here we perform a comprehensive analysis using multiple test statistics to identify regions under selection in 509 dogs from 46 diverse breeds using a newly developed high-density genotyping array consisting of >170,000 evenly spaced SNPs. We first identify 44 genomic regions exhibiting extreme differentiation across multiple breeds. Genetic variation in these regions correlates with variation in several phenotypic traits that vary between breeds, and we identify novel associations with both morphological and behavioral traits. We next scan the genome for signatures of selective sweeps in single breeds, characterized by long regions of reduced heterozygosity and fixation of extended haplotypes. These scans identify hundreds of regions, including 22 blocks of homozygosity longer than one megabase in certain breeds. Candidate selection loci are strongly enriched for developmental genes. We chose one highly differentiated region, associated with body size and ear morphology, and characterized it using high-throughput sequencing to provide a list of variants that may directly affect these traits. This study provides a catalogue of genomic regions showing extreme reduction in genetic variation or population differentiation in dogs, including many linked to phenotypic variation. The many blocks of reduced haplotype diversity observed across the genome in dog breeds are the result of both selection and genetic drift, but extended blocks of homozygosity on a megabase scale appear to be best explained by selection. Further elucidation of the variants under selection will help to uncover the genetic basis of complex traits and disease.  相似文献   
110.

Background

Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of an increasingly acidogenic and aciduric microflora. The complex structure of dental biofilms, allowing for a multitude of different ecological environments in close proximity, remains largely unexplored. In this study, we designed a laboratory biofilm model that mimics the bacterial community present during early acidogenic stages of the caries process. We then performed a time-resolved microscopic analysis of the extracellular pH landscape at the interface between bacterial biofilm and underlying substrate.

Methodology/Principal Findings

Strains of Streptococcus oralis, Streptococcus sanguinis, Streptococcus mitis, Streptococcus downei and Actinomyces naeslundii were employed in the model. Biofilms were grown in flow channels that allowed for direct microscopic analysis of the biofilms in situ. The architecture and composition of the biofilms were analysed using fluorescence in situ hybridization and confocal laser scanning microscopy. Both biofilm structure and composition were highly reproducible and showed similarity to in-vivo-grown dental plaque. We employed the pH-sensitive ratiometric probe C-SNARF-4 to perform real-time microscopic analyses of the biofilm pH in response to salivary solutions containing glucose. Anaerobic glycolysis in the model biofilms created a mildly acidic environment. Decrease in pH in different areas of the biofilms varied, and distinct extracellular pH-microenvironments were conserved over several hours.

Conclusions/Significance

The designed biofilm model represents a promising tool to determine the effect of potential therapeutic agents on biofilm growth, composition and extracellular pH. Ratiometric pH analysis using C-SNARF-4 gives detailed insight into the pH landscape of living biofilms and contributes to our general understanding of metabolic processes in in-vivo-grown bacterial biofilms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号